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Abstract
We present improved simulations of three-dimensional self-avoiding walks
with one end attached to an impenetrable surface on the simple cubic lattice.
This surface can either be a-thermal, having thus only an entropic effect, or
attractive. In the latter case we concentrate on the adsorption transition. We find
clear evidence for the cross-over exponent to be smaller than 1/2, in contrast
to all previous simulations but in agreement with a re-summed field theoretic
ε-expansion. Since we use the pruned-enriched Rosenbluth method (PERM)
which allows very precise estimates of the partition sum itself, we also obtain
improved estimates for all entropic critical exponents.

PACS numbers: 05.50.+q, 61.41.+e, 64.60.Fr

1. Introduction

Single polymers grafted to a plane impenetrable wall have been studied intensely for a long
time. If the surface is energetically neutral, the main effect is a change in the critical
exponent governing the scaling of the partition sum. For an attractive surface the situation
is more interesting, as there is a second-order adsorption transition at a finite strength of the
attraction [1].

Of particular interest is the cross-over exponent at this transition. Early simulations [1, 2]
had given φ > 0.5, but it was claimed in [3] that this was due to finite size corrections to
scaling, and that φ is actually very close to 1/2 (the best estimated being φ = 0.496 ± 0.004).
Basically the same conclusion was reached recently in [4], where an even smaller error bar
was obtained, φ = 0.5005 ± 0.0036, suggesting that φ = 1/2 exactly. Since φ = 1/2 also
in d = 2 and d � 4, this would mean that φ is superuniversal, as it is for branched polymers
[5, 6]. But a completely different picture was drawn in another recent paper [7], where it was
claimed that φ = 0.59. To add to the confusion, we should cite field theoretic results. The
ε-expansion with ε = 4 − d predicts [8, 9] φ = 1/2 − ε/16 + [16π2 − 39]ε2/512 + · · ·. This
would give φ = 0.68, if higher order terms were simply omitted, but Padé–Borel summation
gives φ = 0.483 [10]. On the other hand, fixed dimension (massive theory) renormalization
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group calculations [10, 11] give φ = 0.52. All these calculations have errors which are
difficult to pin down, and the authors of [10] preferred the value 0.52 over 0.483. In any case,
these renormalization group calculations strongly suggest that φ is not superuniversal.

It is the purpose of the present work to clarify the situation by means of much more
precise simulations. We will find that indeed φ is definitely smaller than 1/2 (as predicted
by the resummed ε-expansion, but not by the supposedly more reliable massive field theory
approach). In addition, we shall also provide precise estimates for the location of the adsorption
transition and for the entropic exponents. The latter will be done both for thermal surfaces
(at the adsorption transition point) and for a-thermal surfaces.

We model the polymer by a self-avoiding walk (SAW) of N − 1 steps on a simple cubic
lattice with restriction z � 0. There is an energy −ε for each monomer (site) at z = 0, the first
monomer is located at x = 0. The temperature is taken to be T = 1, so that the Boltzmann
factor for each contact with the surface is q = eε . The adsorption transition is at q = qc > 1.
For the simulations we use the pruned-enriched Rosenbluth method (PERM) [12, 13]. This is
a recursively (depth-first) implemented sequential sampling algorithm with re-sampling [14].
It is similar to the algorithm used in [3], but it is faster and much easier to use. Its main
advantage over conventional Markov chain Monte Carlo (MC) methods is that it gives very
precise estimates of the partition sum, without any need for thermodynamic integration or the
like. To minimize statistical errors and speed up the algorithm, we use Markovian anticipation
[15, 16]. We simulated ≈6.6 × 108 walks with N = 8000 for q = 1 and ≈9.5 × 108 walks
at q ≈ qc. In both cases, about 1.6% of these walks were strictly independent. Altogether
this needed ≈5000 h CPU time on fast (3 GHz) PCs. During the runs with q > 1, results at
slightly different values of q were obtained by re-weighing on the fly, so that one run made
with q ≈ qc gave results at three close values of q. The critical point qc was then found by
interpolation.

The partition sum is written as Z1(N, q) = ∑
m CNmqm, where CNm is the number of

configurations with m contacts with the wall, zik = 0 for k = 1, . . . , m, and the subscript ‘1’
indicates that one end is grafted. For q < qc it scales as

Z1(N, q) ∼ µNNγ1−1 (1)

with µ and γ1 independent of q, but with a q-dependent prefactor.
Near the adsorption transition, Z1(N, q) should scale as [1]

Z1(N, q) ∼ µNNγ s
1 −1�[(q − qc)N

φ], (2)

where �(z) is analytic for finite z and limz→−∞ �(z) is finite and positive. Note that the
dominant exponential growth of Z1(N, q) with N is the same as for ordinary SAWs, as long
as q � qc. Taking the derivative of ln Z1(N, q) with respect to q and setting q = qc thereafter,
we obtain for the average energy exactly at the critical point

EN(qc) = 〈εm〉 ∼ Nφ. (3)

Taking two derivatives we would obtain a scaling ansatz for the specific heat which is often
used to estimate φ and other aspects of the critical behaviour. We will not use it in the present
paper, since equations (2) and (3) give much more precise results, as already found in [3, 6].
We refer to [6] (which deals with the analogous problem for branched polymers) for a detailed
discussion. Note that equation (2) cannot be used with Markov chain MC methods, since the
latter do not give simple and precise estimates of Z1(N, q) itself.

2. Results: a-thermal walls

From previous simulations [3, 17] we know that µ ≈ 4.684 04, but the present simulations
have higher statistics, therefore we should first estimate the critical exponent γ1 in such a way
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Figure 1. Effective exponents defined by equation (4), plotted against 1/N0.7.

that neither µ nor the unknown prefactor in equation (1) affect the value. For this we form the
triple ratios [17]

γ1,eff(N) = 1 +
4 ln Z1(N) − 3 ln Z1(N/3) − ln Z1(3N)

ln 9
(4)

(with Z1(N) ≡ Z1(N, 1)), which should tend to γ1 as N → ∞. The leading corrections to
equation (1) (and thus also to equation (4)) should scale as 1/N� with the same exponent
� ≈ 0.5 holding also for SAWs in absence of a surface [16, 18, 19]. This would suggest
that we should get a straight line when plotting γ1(N) against 1/

√
N . Unfortunately this is

not true, due to the presence of very large analytic corrections ∝1/N, 1/N2, . . .. As seen
from figure 1, they shift the effective correction to scaling exponent to �eff ≈ 0.7, and the
extrapolation to N → ∞ gives

γ1 = 0.6786 ± 0.0012. (5)

This is in good agreement with the best previous MC estimate 0.679 ± 0.002 [3] and with the
field theoretic result 0.680 [10].

Using this value of γ1, we next show in figure 2 the quantity ln Z1(N)−aN +(1−γ1) ln N

for different values of a, plotted again versus 1/N�. Again these data should extrapolate to
1/N → 0 with a finite slope, if a = ln µ. From figure 2 we see that

1/µ = 0.213 490 98 ± 0.000 000 05 (µ = 4.684 0386 ± 0.000 0011), (6)

where the error includes the uncertainty in the estimate of γ1. This is the most precise value
of the critical fugacity of SAWs on the simple cubic lattice published up to now. It is about
80 times more precise than the best estimate from exact enumerations [21].

In addition to the partition sum for SAWs grafted at one end to the surface, we can also
study the partition sum Z11(N) where both ends are constrained to have z = 0. In analogy to
equation (1), it should scale as

Z11(N, q = 1) ∼ µNNγ11−1. (7)

The exponent γ11 should be related to previous exponents by the Barber relation [22]

γ − 2γ1 + γ11 + ν = 0, (8)

where γ and ν are the entropy and Flory exponents (R ∼ Nν) for ungrafted SAWs in the
bulk. Values of Z11(N) are obtained simply by summing over those walks for which the Nth
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Figure 2. The combination ln Z1(N) − N ln µ + (1 − γ1) ln N , with γ1 determined from figure
1 and for three candidate values of µ, plotted against 1/N0.7. Error bars are plotted only for the
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Figure 3. Analogous to figure 2, but for SAWs grafted at both ends to the surface, and with the
candidate values of µ replaced by candidate values of γ11. In order to reduce statistical errors, the
data are binned with bin width �N/N ≈ 0.01.

monomer has z = 0. Using the above estimate of µ and different candidate values of γ11,
we plot in figure 3 the analogous quantity to that shown in figure 2 for singly grafted chains.
We find

γ11 = −0.390 ± 0.002, (9)

to be compared to the previous MC estimate −0.383 ± 0.005 [3] and to the field theoretic
prediction −0.388 [10]. Using the most precise previous estimates of γ and ν from [20]
(γ = 1.1573±0.0002 and ν = 0.587 65±0.000 20), we see that the Barber relation is indeed
perfectly satisfied,

γ − 2γ1 + γ11 + ν = −0.0023 ± 0.0031. (10)

Root mean square end-to-end distances should scale with the same Flory exponent as in
the bulk, but with different prefactors and with different corrections to scaling. We measured
both the components parallel and perpendicular to the wall for singly grafted SAWs. This
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time the corrections to scaling were ∼1/
√

N as expected, i.e. there are much smaller analytic
corrections. Results are shown in figure 4, where we divided averaged square distances by
N2ν and plotted them against 1/

√
N . The ratio

〈
z2
N

〉/〈
x2

N + y2
N

〉
increases with N as also found

in [23], but it converges for N → ∞ to a finite value, 0.938 ± 0.002. In contrast to [23] we
see no indication that either

〈
z2
N

〉
or

〈
x2

N + y2
N

〉
scales with an exponent different from the bulk

Flory exponent.

3. Results: attractive walls

According to equation (2), the exponential growth of the partition sum with N is the same at
qc as at q = 1, i.e. we do not need the triple ratio equation (4) to estimate γ s

1 (N). Instead we
can use

γ s
1,eff(N, q) = 1 +

ln[Z1(2N, q)/Z1(N/2, q)/µ3N/2]

ln 4
(11)

where the ratio between the two partition sums eliminates the unknown prefactor. The critical
point is characterized by the fact that γ s

1,eff(N, q) diverges for q > qc when N → ∞, converges
slowly to γ1 for q < qc and converges to a constant value larger than γ1 exactly at qc. Values
of γ s

1,eff(N, q) obtained by means of equation (11) are shown in figure 5. As in the next figures

to follow, we plotted it against 1/
√

N since there was no different unique value of � which
fitted all observables, and � = 1/2 was not worse overall than other values.

From figure 5, we see that qc ≈ 1.3307 and γ s
1 ≈ 1.23, in good agreement with the

estimates of [3]. More precise values will result by combining also the information from other
observables.

The next quantity we looked at is the average energy, or rather the average number
of sites in contact with the wall. Plotting simply 〈m〉/Nφ would suggest φ = 1/2 and
qc = 1.331, see figure 6. But this does not take into account the fact that corrections to scaling
are very large and should still be important even for the largest N. Indeed, when defining an
effective exponent by φeff(N, q) = (ln 4)−1 ln[E2N(q)/EN/2(q)] and plotting it against 1/

√
N

(figure 7), we see that it extrapolates clearly to a value <1/2, and that qc is closer to the value
1.3307 found from figure 5.

Instead of the effective exponent γ s
11,eff(N, q) defined in complete analogy to

equation (11), we show in figure 8 the difference γ s
1,eff(N, q) − γ s

11,eff(N, q). This is obtained
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from the ratio between the partition sums for singly and doubly grafted polymers, and is
independent of the precise value of µ. Finally, we show in figure 9 the ratio between the mean
square end-to-end distances perpendicular and parallel to the wall.

Comparing figures 5–9, we see that all of them (except of course figure 6) give the same
value for qc. Thus we obtain our precise estimate

qc = 1.330 65 ± 0.000 10. (12)

This is in agreement with the value 1.3310 ± 0.0003 of [3], and with the recent estimate
1.334 ± 0.026 of [4]. For the anisotropy of infinitely long chains at the adsorption transition
this gives 〈z2〉/〈x2 + y2〉 = 0.3845 ± 0.0010. The best estimates of the critical exponents are
then

φ = 0.484 ± 0.002, γ s
1 = 1.226 ± 0.002, (13)

and

γ s
1 − γ s

11 = 0.519 ± 0.003. (14)
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These values are in less agreement with previous estimates. First, the entropic exponents
are slightly smaller (by about 2 standard deviations) than the values given in [3], although
these were already lower than all previous MC estimates. While γ s

1 agrees roughly with the
field theoretic prediction 1.207 of [10], γ s

11 is quite a bit larger (0.707 as opposed to ≈0.666).
Second, and more importantly, the cross-over exponent is now clearly less than 1/2, by some
8 standard deviations. The closest previous MC estimate was 0.496 ± 0.004 [3], which is
off by three sigma. The estimate 0.5005 ± 0.0036 of [4] seems clearly excluded by our data.
It is based on very high statistics of very short (N � 200) chains, which suggests that the
corrections to scaling were not taken fully into account in [4]. As mentioned above, φ < 1/2
is predicted by the first-order term of the ε-expansion, but not when terms up to O(ε2) are
included and not by fixed dimension renormalization group methods. But the resummation of
the ε-expansion done in [10] gave φ = 0.483, in surprisingly good (and presumably fortuitous)
agreement with our result. At least, our estimate is comfortably larger than the first-order
epsilon expansion result, φ > 1/2 − ε/16 = 0.4375.

4. Conclusion

In this paper, we have presented Monte Carlo simulations of single grafted 3D polymers in a
good solvent, both for attractive and for a-thermal walls. The sample seems to be the biggest
studied so far, both concerning the number of chains simulated and their lengths. By using
PERM which gives precise estimates of the partition sum, we could use the partition sum itself
(instead of the specific heat) to locate the critical adsorption point and the critical exponents.
Our estimates continue the decrease with increased statistics observed already in [3]. Our
most interesting result is that the cross-over exponent is clearly less than 1/2, in contrast to all
previous simulations and to the best estimates from field theory.
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